Neural network optimization forE.colipromoter prediction
نویسندگان
چکیده
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملPrediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملNeural network optimization for E. coli promoter prediction.
Methods for optimizing the prediction of Escherichia coli RNA polymerase promoter sequences by neural networks are presented. A neural network was trained on a set of 80 known promoter sequences combined with different numbers of random sequences. The conserved -10 region and -35 region of the promoter sequences and a combination of these regions were used in three independent training sets. Th...
متن کاملStructure Optimization of Neural Network for Time Domain Signal Prediction
Finding appropriate structure of neural network for the problem being solved is one of main problems of neural network design. It can be done empirically or some additional algorithms can be used. The aim of this paper is to compare selected evolutionary algorithms: genetic algorithms, evolutionary strategies and evolutionary programming. Each of these methods is used to design the structure (e...
متن کاملNeural Network Optimization Using Shuffledfrog Algorithm for Software Defect Prediction
Software Defect Prediction (SDP) focuses on the detection of system modules such as files, methods, classes, components and so on which could potentially consist of a great amount of errors. SDP models refer to those that attempt to anticipate possible defects through test data. A relation is present among software metrics and the error disposition of the software. To resolve issues of classifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 1991
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/19.7.1593